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Drug–drug interaction (DDI) is becoming a serious clinical safety issue as the use of multiple 
medications becomes more common. Searching the MEDLINE database for journal articles 
related to DDI produces over 330,000 results. It is impossible to read and summarize these 
references manually. As the volume of biomedical reference in the MEDLINE database continues 
to expand at a rapid pace, automatic identification of DDIs from literature is becoming 
increasingly important. In this article, we present a random-sampling-based statistical algorithm 
to identify possible DDIs and the underlying mechanism from the substances field of MEDLINE 
records. The substances terms are essentially carriers of compound (including protein) 
information in a MEDLINE record. Four case studies on warfarin, ibuprofen, furosemide and 
sertraline implied that our method was able to rank possible DDIs with high accuracy (90.0% for 
warfarin, 83.3% for ibuprofen, 70.0% for furosemide and 100% for sertraline in the top 10% of a 
list of compounds ranked by p-value). A social network analysis of substance terms was also 
performed to construct networks between proteins and drug pairs to elucidate how the two drugs 
could interact. 
 
  



Drug-drug interaction (DDI) is typically defined as a change in the effect of a drug when it is 
taken together with another drug. A DDI may involve an increase in the action of either drug, a 
decrease in drug efficacy, a delay in drug absorption rate, or an unexpected harmful side effect. 
DDI incidence increases as the simultaneous use of multiple drugs becomes more common1-3. 
Centers for Disease Control (CDC) reported that the percentage of the U.S. population taking 
three or more prescription drugs increased from 11.8% in 1988-1994 to 20.8% in 2007-2010, and 
the percentage of people taking five or more drugs increased from 4.0% to 10.1% during this 
same time period4. DDIs are a major cause of morbidity and mortality and lead to increased 
health care costs. DDIs make up nearly 3% of all hospital admissions5 and 3% to 5% of all 
inpatient medication errors6. DDIs are difficult to be observed during clinical trials because 
clinical trials do not test for DDIs directly. Serious interactions are often discovered after a drug 
is already on the market for a long time7. Therefore, Identification of possible DDIs is very 
important for drug development and clinical patient care. 

The experimental approaches in characterizing DDIs, e.g. in vitro8, in vivo9, and in populo10, are 
performed at a relatively small scale. Computational methods provide the opportunity to conduct 
large-scale studies on DDIs. Thus far, computational solutions to predict DDIs have consisted of 
two distinct approaches: 1) Similarity-based approaches that measure the similarity of drug 
information. Previous methods were originally designed to infer novel potential targets of drugs 
based on various type of data, such as molecular structures11,12, targets13,14, indications15, side-
effects16 and gene expression profiles17. These methods can be used to infer drug interactions. 2) 
Knowledge-based approaches that predict DDI from scientific literature (biomedical abstracts)18-

22, an electronic medical record database23 and the FDA Adverse Event Reporting System24, 
where text mining presents a solution to the problem of uncovering novel DDIs.  

DDIs are frequently reported in clinical and scientific journals. Therefore, literature is the most 
useful and comprehensive resource for the DDI detection. MEDLINE (Medical Literature 
Analysis and Retrieval System Online) developed by the U.S. National Library of Medicine 
(NLM), is the most widely used database of life sciences and biomedical literature. MEDLINE 
contains over 24 million entries from more than 5,600 journals, with 2,000-4,000 new references 
being added daily. A MEDLINE search for journal articles related to DDI currently produces 
more than 330,000 results. Though this gigantic amount of MEDLINE literature pertaining to 
DDI offers an unprecedented opportunity for the study of drug-drug interaction, it is impossible 
to identifying DDI information from these references manually. High throughput, accurate, 
reliable and user-friendly retrieval of DDI information is in increasing demand.  

Generally, a MEDLINE record representing one journal article is composed of the some fields 
including title of the journal article, author information, journal information, publication type, 
language, abstract, MeSH terms (Medical Subject Headings), and substances. Recently published 
research has focused on information extraction from abstract18-22. In our study we chose the 
substances field to investigate DDIs because the field of MEDLINE records contains a bounty of 
useful information of compounds and proteins. These terms in the substances field are essentially 
carriers of a documents' information. The Substances terms of MEDLINE records are generally 
manually indexed by specialized personnel, which makes the information more reliable. To our 
knowledge, no studies have been performed to investigate DDIs using substances terms from 
MEDLINE. 

Our strategy was to use a random-sampling-based statistical algorithm to compare the co-
occurrence of substances with the drug of interest in MEDLINE records containing the keyword 
“drug interactions” and those in records without “drug interactions”. Four case studies on 
warfarin, ibuprofen, furosemide and sertraline implied that our method was able to rank possible 
DDIs with high accuracy. In addition to identifying possible DDIs, the algorithm indicated 
proteins that may participate in those DDIs. Social network analysis was also performed to 
construct networks between proteins and drug pairs to elucidate the possible mechanism of DDIs. 



RESULTS 

Identification of the drug pairs with DDIs. For ibuprofen, warfarin, furosemide and sertraline, 
there are 500, 2013, 650 and 299 articles with DDI-related MeSH terms in the MEDLINE 
database, respectively. Then, 916, 1364, 932 and 496 candidate substances were identified from 
the related articles. The cutoff value of compound pair frequency was set at 3, which means that 
if the frequency of candidate compound was less than 3, the candidate was not considered for 
further analysis. Our random-sampling-based algorithm showed that the co-occurrences of 39, 
161, 62, and 29 chemicals with the corresponding drugs in articles with drug-interactions were 
significantly higher than in articles without drug-interactions (p < 0.1). As shown in Table 1, in 
the top 10 compounds identified by our algorithm, 8, 10, 7, 9 compounds were shown to interact 
with ibuprofen, warfarin, furosemide and sertraline respectively. These four examples show that 
our algorithm can correctly identify most of DDIs. 
 

As shown in Figure 1, the random sampling step in our algorithm improved accuracy of 
identification. For example, with such a step, our algorithm ranked DDIs with a high accuracy 
(90% for warfarin, 83.3% for ibuprofen, 70.0% for furosemide and 100% for sertraline in the top 
10% of predicted chemical list, shown in black bars in Figure 1). However, the accuracy (grey 
bars) was 85.0% for warfarin, 50.0% for ibuprofen, 60.0% for furosemide and 50.0% for 
sertraline in the top 10% of compounds identified by co-occurrence without random sampling. 
The accuracy (white bars) was only 78.3% for warfarin, 42.9% for ibuprofen, 50.0% for 
furosemide and 60.0% for sertraline in the top 10% of compounds identified by only frequency. 
The results prove the effectiveness of the random sampling step to filter irrelevant substances 
terms. 

Analysis of the proteins involved DDIs. Understanding the drug-protein-drug interactions is key 
in exploring the action mechanism of DDIs. Besides identifying compound pairs that may 
interact, we also investigated the possible mechanism of DDIs by analyzing the protein 
information from the substances field of MEDLINE records. Statistically significant proteins 
from the substances terms were identified using the same random-sampling-based approach. 
Significant proteins of ibuprofen, warfarin, furosemide and sertraline were shown in Table 2. 
PTGS1 protein, CYP2C9 and Aryl Hydrocarbon Hydroxylases were identified for ibuprofen. 
Among them, PTGS1 and CYP2C9 have been shown to be related to DDIs involving ibuprofen. 
Ibuprofen is a substrate of the hepatic cytochrome isoenzyme CYP2C925. Inhibiting CYP2C9 by 
other compounds may lead to increased plasma concentrations of ibuprofen26. In addition, the 
adverse gastrointestinal (GI) effects caused by the nonsteroid anti-inflammatory drugs (NSAID) 
are associated with inhibition of PTGS127. Because ibuprofen exerts similar pharmacologic 
characteristics to other systemic nonsteroidal antiinflammatory drugs (NSAIDs), additive 
pharmacodynamic effects, including a potential increase for additive adverse gastrointestinal (GI) 
effects, may be seen if ibuprofen is used with other NSAIDs28. 

For warfarin, several cytochrome P-450 (CYP) isoenzymes (including CYP3A4, CYP1A2, 
CYP2D6 and CYP2C9), steroid 16-alpha-hydroxylase, steroid hydroxylases, aryl hydrocarbon 
hydroxylases, alanine transaminase, aspartate aminotransferases, PTGS2 and prostaglandin-
endoperoxide synthases were identified as statistically significant proteins. Warfarin is 
stereoselectively metabolized by hepatic cytochrome P-450 (CYP) isoenzymes to inactive, 
hydroxylated metabolites (predominant route) and by reductases to reduced metabolites (warfarin 
alcohols). Inhibiting these cytochrome P-450 (CYP) isoenzymes by other compounds may 
increase or decrease the metabolism of warfarin leading to altered anticoagulation effects29. The 
CYP isoenzymes involved in the metabolism of warfarin include 2C9, 2C19, 2C8, 2C18, 1A2, 
and 3A428,30-32. CYP2C9 is the principle enzyme that metabolizes S-warfarin and modulates the in 



vivo activity of warfarin. The R-isomer is metabolized by CYP1A2 and CYP3A4, and to a lesser 
extent by CYP2C19.  

For furosemide, Thromboxane-A Synthase and Glutathione Transferase were identified. 
Thromboxane-A synthase inhibition can enhance furosemide-induced renal vasodilation33. The 
activity of Glutathione Transferase might be modified after the interaction between furosemide 
and sulforaphane, and this may lead to drug effectiveness alternation34. 

For sertraline, several cytochrome P-450 (CYP) isoenzymes (including CYP2D6, CYP2C9, 
CYP1A2, CYP2C19), Mixed Function Oxygenases, Steroid 16-alpha-Hydroxylase, Steroid 
Hydroxylases, Aryl Hydrocarbon Hydroxylases and Receptor, Serotonin, 5-HT1A were 
identified. In vitro data suggest sertraline is a substrate of CYP2B6, CYP2C9, CYP2D6, 
CYP3A4, and CYP2C1935. Inhibiting these cytochrome P-450 (CYP) isoenzymes may increase 
or decrease the metabolism of sertraline leading to increased serum concentrations and possible 
toxicity36. In addition, antagonizing serotonin (5-HT) receptors could oppose the pharmacologic 
actions of sertraline37. These four case studies show that our algorithm can correctly identify most 
of DDI-related proteins. 

 
 

Constructing networks between proteins and drug pairs. In this study, the relationships 
between proteins and drugs were modeled using social network analysis. We inferred that the 
proteins linking drug pairs might take part in the DDIs of the pair. For example, as shown in 
Figure 2B, CYP2C9 acted as a link between fluoxetine and warfarin. In clinical studies, 
combining fluoxetine and warfarin may further increase the risk of bleeding by inhibiting 
warfarin's CYP2C9 metabolism38. Bosentan interacted with warfarin with CYP2C9 and CYP3A4 
as connective nodes. Coadministration of bosentan 500 mg twice daily for 6 days decreases the 
plasma concentrations of both S-warfarin (a CYP2C9 substrate) and R-warfarin (a CYP3A4 
substrate) by 29% and 38%, respectively39 The networks will not only show which proteins are 
more important for DDIs but also provide some mechanistic illuminations. The mechanisms of 
DDIs may be classified into pharmacokinetic and pharmacodynamic2. Pharmacokinetic DDIs 
occur when one drug influences the ADMET (absorption, distribution, metabolism, or excretion) 
of another. Pharmacodynamic DDI occur when both drugs act at the same biological 
target/pathway resulting in synergistic or antagonistic effects. From the constructed network, we 
find that the DDI-related proteins for warfarin are metabolism-related (such as CYP2C9, 
CYP3A4, and CYP1A2) and infer that the warfarin involved DDIs are mainly pharmacokinetic. 
 

DISCUSSION 
In this paper we presented a novel algorithm to facilitate knowledge discovery of DDIs by 
exploring existing high quality information that was manually complied into substances fields in 
MEDLINE literature. By using a random sampling step our method has the advantage of 
eliminating irrelevant terms, yielding a high accuracy compared to ranking strategies based on 
term frequency and term pair co-occurrence without random sampling. In addition, our method 
appeared to be capable of identifying proteins and networks involved in DDIs, shedding light on 
potential DDI mechanisms. There are many studies for MEDLINE data mining. Our study 
innovates in the following ways: 

1. Recently published research has focused on information extraction from abstract. We 
focus on substances terms in MEDLINE databases in this paper. Substance is chosen to 
investigate DDIs because the field of MEDLINE records contains a lot of useful chemical 
information including MeSH chemical and drug terms, protocol terms and non-MeSH rare 
disease terms from the NIH Office of Rare Diseases. The substances terms of MEDLINE records 



are generally indexed by specialized personnel, which makes the information more reliable. To 
our knowledge, no studies have been performed to investigate DDIs using substances terms. 

2. For four example compounds, the random sampling step in our algorithm yields a higher 
overall identification accuracy than methods done without random sampling or methods based on 
frequency only.  

3. Our algorithms not only identify possible DDI events but also predict the mechanism by 
which two (or more) drugs interact. No algorithm is available for identifying the proteins 
potentially involved in DDIs from MEDLINE database.  

In summary, we believe our algorithm will improve the ability of the research community to 
efficiently use large and complex MEDLINE data. As the number of records in the MEDLINE 
database continues to grow, our algorithm will become increasingly vital for DDI studies. 

There are some limitations of the proposed algorithm. Information in substances fields is 
compiled manually, some information is inevitably missing and this is an obstacle for higher 
recall. Some low-frequency terms were excluded at the cutoff of 3, which may have resulted in 
lower recall. However, as more and more references are added to MEDLINE, the impact of these 
factors will be improved in the future. In addition, some mechanism-related information can be 
summarized in the text of the abstract of articles. Therefore, a text-mining algorithm will be 
developed in subsequent research to automate extraction of specific information such as, 
compounds, genes (or proteins) and their associations from the Abstract field of MEDLINE 
records.  

A web service, DDIRANK, will be developed implementing the statistical algorithms 
described in this paper. Users will query DDIRANK by drug/compound name and view analyzed 
information from MEDLINE. The service will be freely accessible and support all common 
Internet browsers. It will be a valuable tool for clinical pharmacists and basic scientists to analyze 
DDIs in a reliable way.  

Generally, the DDIRANK system is an implementation of algorithms that extract substances 
from MEDLINE records and then probabilistically score and rank these terms. The DDIRANK 
system will include two components:  

1) DDI_extract.  The main function of DDI_extract is to extract substances from MEDLINE 
records. Users can submit analysis queries through the web interface by inputting a compound 
name. The compound name and its synonym will be used to build a query to search MEDLINE 
database through the PubMed search engine. All MEDLINE records containing the queried 
compound will be downloaded. Substances of the retrieved records will then be extracted and 
stored in a pre-established MySQL database. 2) DDI_substance. The function of DDI_substance 
is to identify the most reliable DDI-related substance information from the DDI_extract using the 
random-sampling-based approach shown in this paper. The p-value can rank the extracted 
substances and filter the terms that are not related to DDIs. 

The web service will be developed following a 3-tier design:  users can submit analysis queries 
through the web interface; the queries will be processed using PHP (middle-tier, application 
server based on Apache) against a MySQL relational database (back-end, database server). The 
result of each query is presented to the user in the web browser or through email. The results of 
any query can be exported to various popular file formats such as CSV and PDF.  

METHODS 
 
Identification of DDI-related compounds or proteins from substances of MEDLINE. Our 
proposed algorithm contains the three steps shown in Figure 3. In the first step, we searched 
PubMed for the name of the drug and downloaded the resulting articles from MEDLINE. The text 
in the PubMed IDs (PMIDs), title, abstract, substances and MeSH terms fields of these articles 
was extracted, excluding those articles that lacked MeSH terms. The remaining articles were 



separated into two groups: articles containing the DDI-related MeSH terms (Group A) and 
articles without DDI-related MeSH terms (Group B). Here, DDI-related MeSH terms include 
‘drug interactions’, ‘drug agonism’, ‘drug partial agonism’, ‘drug antagonism’, ‘drug inverse 
agonism’, ‘drug synergism’, ‘food-drug interactions’, and ‘herb-drug interactions’. A list of all 
the compounds and proteins in the substances field of articles in group A was created. From here 
on we will refer to members of this list as 'candidates' and the co-occurrence of a member of this 
list, either a compound or protein, with the queried drug that was searched for on PubMed, as a 
'term pair'. Then the number of articles that contained a term pair was counted. We set cutoff 
value of compound pair frequency at 3, meaning that if the frequency of term pairs in group A 
was less than 3, the candidate was not considered for further analysis. The value was selected 
based on the balance of accuracy and the numbers of candidates. As shown in Supplementary 
Figure 1, with the augment of cutoff, the area under the curve (AUC) increases, while the 
number of obtained compounds decreases.  

Generally, because the articles in group A have DDI-related Mesh terms, we believed the 
number of compounds and proteins in group A involved in DDIs would naturally be larger than 
the number of DDI-related compounds and proteins in group B. However, the candidate list 
derived from the first step contained false positives that were unrelated to DDIs. Therefore, an 
important task was the exclusion of false positive candidates. In the second step, we compared the 
number of the term pairs in the substances field of group A with the number of the term pairs in 
the substances field of group B using random sampling analysis. During this step, the number of 
articles selected from group B was equal to the number of articles that had been selected from 
group A. The number of term pairs in group B was calculated. The process was repeated many 
times (for example, 100 times) to establish the null distribution of the term pairs in the articles 
without DDIs. 

In the third step, the p-value for each candidate compound or protein was calculated based on 
the distribution identified in step two. Co-occurrences of protein or compound with queried drugs 
are integers and we made the assumption that the co-occurrences followed a normal distribution. 
The co-occurrences of a term pair were set as x0 (in group A), and x1, x2, x3...x100, (100 times in 
group B) respectively. Null hypothesis H of testing was that x0 has the same distribution with 
{x1, x2, x3...x100}. The p-value was defined as the probability for a right tail event under the 
assumption of H. The formula used to calculate the p-value was p = P(x>x0). In practice, there 
occurred a special situation in the distribution {x1, x2, x3...x100} of x1 = x2 = x3 =...= x100 = 0. In this 
case, p was set to 0 and the larger x0 was, the higher the corresponding candidate compound or 
protein was ranked. Statistical significance level was set to 0.1. A p-value less than 0.1 indicated 
that the number of the term pairs in articles with DDIs (group A) was significantly higher than 
that in articles without DDIs (group B).  

Social network analysis. Social network analysis was applied to explore the connections among 
drug pairs and significant protein terms. Social network analysis is a strategy for characterizing 
networked structures in terms of nodes (compounds or proteins) and edges (interactions) using 
graph theory40. The term pairs whose p-value < 0.1 and corresponding co-occurrence counts ≥ 3 
were selected to build a network using package igraph in R. The terms and articles were 
considered as people and groups in a social network. The term-article matrix was then taken as 
the group membership of people.  

Algorithm Validation. We chose four medications, ibuprofen, warfarin, furosemide and 
sertraline to demonstrate the applicability of our method by validating our DDI predictions 
against a gold standard. DDI information for these two compounds was collected from LexiComp 
(http://online.lexi.com), Clinical Pharmacology (http://clinicalpharmacology-ip.com), Drug 
InteractionChecker (http://www.drugs.com/drug_interactions.php), and Micromedex 



(http://micromedex.com) databases as a gold standard for validation. Ibuprofen is considered to 
be among the safest nonsteroidal anti-inflammatory drug with few side effects, however, 
combining ibuprofen with some medications, such as aspirin increases the risk of certain side 
effects. Warfarin is an anticoagulant used in the treatment of thrombosis. Warfarin can have 
dangerous side effects (for example bleeding) from interacting with certain medicines or even 
with food. Furosemide is a loop diuretic that inhibits sodium and chloride reabsorption. Some of 
the drug interactions with furosemide can potentially lead to hearing loss, extremely low blood 
pressure, or low potassium levels. Sertraline is a selective serotonin reuptake inhibitor commonly 
used to treat anxiety disorders and major depression. Several potential drug interactions with 
sertraline can cause symptoms of serotonin syndrome, which can be very dangerous. 
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Figure. 1. Comparison of performance of three methods (ranking DDIs based on frequency: 
white, based on co-occurrence without random sampling filtering: grey, and based on co-
occurrence with random sampling: black) for ibuprofen, warfarin, furosemide and sertraline. 

 

Figure. 2. The social network constructed by selected compounds and proteins for ibuprofen (A), 
warfarin (B) furosemide (C) and sertraline (D). The proteins and the compounds are shown in 
grey and white. 

Figure 3. Workflow of the algorithm. 
 

  



Table 1. Performance of the identified compounds in a top 10 list of results based on co-
occurrence with random sampling. 

Compouds interacted 
with ibuprofen 

Frequency p-value 

Fluconazole 7 0 
Fluvastatin 3 0 
Voriconazole 3 0 
Digoxin 6 0 

     Lithium      6 0 
Captopril 7 0 
Aspirin 87 0 
Lisinopril 3 0  
Warfarin 15 0 
Itraconazole 3 2.22E-16 

Compouds interacted 
with warfarin 

Frequency p-value 

Miconazole 22 0 
Moxifloxacin 7 0 
Methyl salicylate 7 0 
Tramadol 7 0 
Clarithromycin     7 0 
Terbinafine 6 0 
Duloxetine 4 0 
Fenofibrate 4 0 
Tolterodine 3 0 
Pitavastatin 3 0 

Compouds interacted 
with furosemide 

Frequency p-value 

Diflunisal 3 0 
Clenbuterol 3 0 
Probenecid 21 0 
Indomethacin 44 0 
Fentanyl      3 0 
Ceftazidime 3 0 
Cephaloridine 7 3.00E-15 
Aprotinin 3 1.07E-13 
Phenylbutazone 7 1.51E-11 
Warfarin 8 2.07E-11 

Compouds interacted 
with sertraline 

Frequency p-value 

linezolid 4 0 
Phenytoin 4 0 
Ammonium Chloride 3 0 
Selegiline 4 0 
Carbamazepine 9 0 
Methadone 4 1.76E-13 
pramipexole 3 3.81E-09 
5-Hydroxytryptophan 3 6.59E-09 
aripiprazole 5 2.61E-08 
1-Naphthylamine 71 5.44E-07 

Compounds predicted correctly are in italic and bold. 



Table 2. Significant proteins identified from substances of MEDLINE for ibuprofen, warfarin, 
furosemide and sertraline. 

Drug Extracted enzyme involved in DDIs Frequency p value 

Ibuprofen 
PTGS1 protein, human 
Cytochrome P-450 CYP2C9 
Aryl Hydrocarbon Hydroxylases 

5 
3 
3 

1.20E-05 
7.47E-03 
1.28E-02 

 CYP3A4 protein, human 13 0 
 Cytochrome P-450 CYP3A 17 0 
 Prostaglandin-Endoperoxide Synthases 3 2.32E-11 
Warfarin PTGS2 protein, human 3 2.32E-11 
 Cyclooxygenase 2 3 3.38E-08 
 Cytochrome P-450 CYP1A2 5 1.77E-04 
 Cytochrome P-450 CYP2D6 5 5.10E-04 
 CYP3A protein, human 5 5.65E-04 
 Steroid 16-alpha-Hydroxylase 11 4.60E-03 
 Steroid Hydroxylases 11 7.25E-03 
 Aryl Hydrocarbon Hydroxylases 77 8.92E-03 
 CYP2C9 protein, human 67 5.81E-02 
 Cytochrome P-450 CYP2C9 67 6.08E-02 
 Alanine Transaminase 3 8.32E-02 
 Aspartate Aminotransferases 3 8.47E-02 

Furosemide Thromboxane-A Synthase 
Glutathione Transferase 

3 
3 

0 
1.78E-15 

Sertraline 

CYP3A protein, human 
Mixed Function Oxygenases 
Cytochrome P-450 Enzyme System 
Cytochrome P-450 CYP3A 
Steroid 16-alpha-Hydroxylase 
Steroid Hydroxylases 
Aryl Hydrocarbon Hydroxylases 
Cytochrome P-450 CYP2D6 
Cytochrome P-450 CYP2C9 
CYP2C9 protein, human 
Cytochrome P-450 CYP1A2 
Cytochrome P-450 CYP2C19 
CYP2C19 protein, human 
Receptor, Serotonin, 5-HT1A 

8 
14 
18 
8 
5 
5 
8 
9 
4 
4 
3 
3 
3 
3 

0 
0 
0 
0 
0 
0 
0 
0 
1.76E-13 
1.76E-13 
2.82E-12 
4.10E-06 
4.10E-06 
6.95E-03 

 

 


